Intensified and protective CD4+ T cell immunity in mice with anti–dendritic cell HIV gag fusion antibody vaccine
نویسندگان
چکیده
Current human immunodeficiency virus (HIV) vaccine approaches emphasize prime boost strategies comprising multiple doses of DNA vaccine and recombinant viral vectors. We are developing a protein-based approach that directly harnesses principles for generating T cell immunity. Vaccine is delivered to maturing dendritic cells in lymphoid tissue by engineering protein antigen into an antibody to DEC-205, a receptor for antigen presentation. Here we characterize the CD4+ T cell immune response to HIV gag and compare efficacy with other vaccine strategies in a single dose. DEC-205-targeted HIV gag p24 or p41 induces stronger CD4+ T cell immunity relative to high doses of gag protein, HIV gag plasmid DNA, or recombinant adenovirus-gag. High frequencies of interferon (IFN)-gamma- and interleukin 2-producing CD4+ T cells are elicited, including double cytokine-producing cells. In addition, the response is broad because the primed mice respond to an array of peptides in different major histocompatibility complex haplotypes. Long-lived T cell memory is observed. After subcutaneous vaccination, CD4+ and IFN-gamma-dependent protection develops to a challenge with recombinant vaccinia-gag virus at a mucosal surface, the airway. We suggest that a DEC-targeted vaccine, in part because of an unusually strong and protective CD4+ T cell response, will improve vaccine efficacy as a stand-alone approach or with other modalities.
منابع مشابه
Dendritic cell targeted HIV‐1 gag protein vaccine provides help to a recombinant Newcastle disease virus vectored vaccine including mobilization of protective CD8+ T cells
INTRODUCTION Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune-modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ...
متن کاملPD1-based DNA vaccine amplifies HIV-1 GAG-specific CD8+ T cells in mice.
Viral vector-based vaccines that induce protective CD8+ T cell immunity can prevent or control pathogenic SIV infections, but issues of preexisting immunity and safety have impeded their implementation in HIV-1. Here, we report the development of what we believe to be a novel antigen-targeting DNA vaccine strategy that exploits the binding of programmed death-1 (PD1) to its ligands expressed on...
متن کاملDendritic cell targeted HIV gag protein vaccine provides help to a DNA vaccine including mobilization of protective CD8+ T cells.
To improve the efficacy of T cell-based vaccination, we pursued the principle that CD4(+) T cells provide help for functional CD8(+) T cell immunity. To do so, we administered HIV gag to mice successively as protein and DNA vaccines. To achieve strong CD4(+) T cell immunity, the protein vaccine was targeted selectively to DEC-205, a receptor for antigen presentation on dendritic cells. This tar...
متن کاملSoluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine.
BACKGROUND DNA vaccines remain an important component of HIV vaccination strategies, typically as part of a prime/boost vaccination strategy with viral vector or protein boost. A number of DNA prime/viral vector boost vaccines are currently being evaluated for both preclinical studies and in Phase I and Phase II clinical trials. These vaccines would benefit from molecular adjuvants that increas...
متن کاملImproved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody.
Protein vaccines for T-cell immunity are not being prioritized because of poor immunogenicity. To overcome this hurdle, proteins are being targeted to maturing dendritic cells (DCs) within monoclonal antibodies (mAbs) to DC receptors. To extend the concept to humans, we immunized human immunoglobulin-expressing mice with human DEC205 (hDEC205) extracellular domain. 3D6 and 3G9 mAbs were selecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 203 شماره
صفحات -
تاریخ انتشار 2006